SCHOOL ENTRANCE TEST, 2019

CLASS : XI

फेक्षा : XI

MATHEMATICS

गणित

Time : Two Hours

समय : दो घण्टे

Maximum Marks : 100

IMPORTANT

Read carefully the 'Instructions for Answering' given on the Answer Sheet and answer the questions as directed : उत्तर-पत्र पर दिए गए 'उत्तर अंकित करने के लिए अनुदेश' ध्यान से पढ़िए और निर्देशानुसार उत्तर दीजिए :

(1) 2 (2) -2 (3) 1 (4) 4 2 (2) -2 (3) 1 (4) 4 2 (2) -2 (3) 1 (4) 4 2 (4) 4 (4) 4 3 (4) 4 (4) 4 4 (4) 4 (4) 4

 $8x^3 + ax + b$ is divisible by $x^2 + 1$, then the values of a and b SET/XI(M)/10/27(i) यदि x²+x²+8x²+ax+b,x²+1 से पूर्णतः विभाजित हो जाय, तो a और b (2) a = 1, b = -7का मान होगा (4) a = -1, b = -7(1) a = -1, b = 7

03. After covering a distance of 30 km with a uniform speed there is some defect in a train engine and therefore its speed gets reduced to 4/5 of its original speed. Consequently, the train reaches its destination late by 45 minutes. If, the defect in engine would have occurred after covering 18 kilometres more distance, the train would have reached 9 minutes earlier. The original speed of the train is :

(1) 120 km/hr

(2) 90 km/hr

(3) 30 km/hr

(4) 20 km/hr

एक रेलगाड़ी द्वारा 30 किलोमीटर की दूरी एक समान चाल से तय किया गया, उसके बाद उसके इंजन में खराबी आ जाने से रेलगाड़ी की चाल पहले की अपेक्षा 4/5 भाग रह जाती है, जिसके परिणामस्वरूप रेलगाड़ी अपने गन्तव्य स्थान पर 45 मिनट विलम्ब से पहुँचती है। यदि रेलगाड़ी के इंजन में यह खराबी 18 किलोमीटर और चलने के बाद आई होती, तो यह रेलगाड़ी अपने नियत स्थान पर पहुँचने में पहले की तुलना में 9 मिनट कम समय लेती। तो रेलगाड़ी की मूल चाल है :

(1) 120 किमी/ घण्टा

(2) 90 किमी/ घण्टा

(3) 30 किमा/ घण्टा

(4) 20 किमी/ घण्टा

04. 8 men and 12 boys can complete a work in 10 days while 6 men and 8 boys can complete it in 14 days. The time taken by one man alone to complete the work is:

(1) 70 days (2) 140 days (3) 280 days (4) 210 days

8 आदमी व 12 लड़के एक काम को 10 दिन में पूरा करते हैं जबकि 6 आदमी व 8 लड़के उसी काम की 14 दिन में पूरा करते हैं, तो एक आदमी अकेला उस काम की पूरा करने में समय लगाता है :

- (1) 70 दिन (2) 140 दिन (3) 280 दिन
- O5. A factory keeps increasing output of its goods by the same percentage every year. Find the percentage if it is known that the output is doubled in the last two years:
 - $(-\sqrt{2}+1)\times100\%$

 - - None of these

एक फैक्ट्री अपने माल की उत्पादन वृद्धि दर एक समान प्रतिशत से बनाये रखती है। यदि पिछले दो वर्षों में उत्पादन दुगुना हो गया, तो वृद्धि दर होगी :

(1) $\left(-\sqrt{2}+1\right) \times 100\%$

(2) $(\sqrt{2}+1)\times100\%$

(3) $(\sqrt{2}-1)\times100\%$

(4) इनमें से कोई नहीं

06. One-fourth of a herd of camels was seen in the forest. Twice the square root of the herd had gone to mountains and the remaining 15 camels were seen on the bank of a river. The total number of camels is :

ऊँटों के एक समूह का एक-चौथाई भाग जंगल में दिखाई दिया। उसमें से समूह में शामिल कुल ऊँटों की संख्या के वर्गमूल का दुगुना समूह पहाड़ों पर चला गया तथा शेष 15 ऊँट एक नदी के किनारे देखे गये। तो उस समूह में कुल ऊँटों

की संख्या है :

1) 16

(3) 64

(4) 24

SET/XI(M)/19/27(i)

07. If there are (2n+1) terms in A.P., then the ratio of the sum of odd terms and the sum of even terms is

(2) (n+1):n

(4) None of these

(3) n: (n+1)

यदि एक समान्तर श्रेणी में (2n+1) पद है, तो विषम तथा सम पदों के योगफल का अनुपात होगा :

(1) (n-1): n

(2) (n+1): n

(3) n: (n+1)

(4) इनमें से कोई नहीं

08. If $\tan \theta + \frac{1}{\tan \theta} = 2$, then the value of $\tan^2 \theta + \frac{1}{\tan^2 \theta}$ is:

यदि
$$\tan \theta + \frac{1}{\tan \theta} = 2$$
 हो, तो $\tan^2 \theta + \frac{1}{\tan^2 \theta}$ का मान होगा :

(2) 16

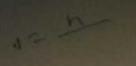
09. The angle of elevation of a jet plane from a point A on the ground is 60°. After a flight of 30 seconds, the angle of elevation changes to 30°. If the jet plane is flying at a constant height of 3600 \(\sqrt{3} m, \) the speed of jet plane is :

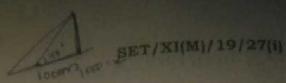
(1) 864 km/hr

(2) 108 km/hr

(3) 720 km/hr

(4) 664 km/hr


एक जेट हवाई जहाज का भू-तल पर स्थित एक बिन्दु A से किसी क्षण पर उन्नयन कोण 600 है। यदि 30 सेकेण्ड पश्चात् हवाई जहाज का उन्नयन कोण बदल कर 30° हो जाता है तथा हवाई जहाज एक समान ऊँचाई 3600 √3 मीo पर उड़ रहा हो, तो हवाई जहाज की चाल होगी :


(1) 864 किमी/ घण्टा

(2) 108 किमी/ घण्टा

(3) 720 किमी/ घण्टा

(4) 664 किमी / घण्टा

10. At the foot of a mountain the elevation of its summit is 45%, after ascending 1000 meter towards the mountain up a slope of 300 inclination, the elevation is found to be 60°. The height of the

(2) 2366 meter

(4) 1636 meter

किसी पहाड़ के पाद से इसके शिखर का उन्नयन 450 है, पहाड़ की तरफ 300 वाली ढलान पर 1000 मी० ऊपर चढ़ने के बाद उन्नयन 600 है, तो पहाड़ की ऊँचाई होगी : (√3 = 1.732)

(1) 2633 मीटर (2) 2366 मीटर (3) 1366 मीटर (4) 1636 मीटर

11. The points (a,a) (-a, -a) and $(-\sqrt{3}a, \sqrt{3}a)$ are the vertices of a triangle. The area of triangle is:

विन्दु (a,a) (-a, -a) और (-\sqrt{3a}, \sqrt{3a}) एक त्रिभुज के शीर्ष है, तो त्रिभुज का क्षेत्रफल होगा :

 $2\sqrt{3}a^2$

(2) $\sqrt{3}a^2$ (3) $\frac{\sqrt{3}}{2}a^2$ (4) $2\sqrt{3}a$

12. If the coordinate of the mid-points of the sides of a triangle are (1,1), (2,-3) and (3, 4) its centroid is:

यदि एक त्रिभुज की भुजाओं के मध्य विन्दुओं के निर्देशांक (1,1), (2,-3) और (3, 4) है, तो केन्द्रक के निर्देशांक होंगे :

(1) (0,0)

(2) $\left[2, \frac{2}{3}\right]$

(3) (3,1)

(4) $\left(1,\frac{2}{3}\right)$

	If the coordinates of two points A and B are (3, 4) and area respectively. Find the coordinates of any point P, if PA = PB and area respectively. Find the coordinates of any point P, if PA = PB and area respectively. Find the coordinates of any point P, if PA = PB and area respectively.
13.	If the coordinates of any point I,
	of APAB = 10 square units. (7, -2) or (-1, 0)

(1) (-7, 2) or (-1, 0)

(4) None of these

दो बिन्दुओं A और B के निर्देशांक क्रमशः (3, 4) और (5, -2) हैं, तो एक वि P का निर्देशांक ज्ञात कीजिए यदि PA = PB तथा APAB का क्षेत्रफल 10 इकाई है।

(1) (-7, 2) या (-1, 0)

(3) (-7, -2) या (-1, 0)

(2) (7, -2) या (-1, 0) (4) इनमें से कोई नहीं

14. If A is the area of a right triangle and b is one of the sides containing the right angle, then the length of the altitude on the hypotenuse is :

यदि एक समकोण त्रिभुज का क्षेत्रफल A है तथा समकोण बनाने वाली एक भुजा की लम्बाई b हो, तो समकोण वाले शीर्ष के कर्ण पर डाले गये लम्ब की लम्बाई होगी:

(1)
$$\frac{Ab}{\sqrt{b^4 + 4A^2}}$$
 (2) $\frac{2Ab}{\sqrt{b^4 + 4A^2}}$ (3) $\frac{Ab}{\sqrt{b^4 + 2A^2}}$ (4) $\frac{Ab}{\sqrt{b^4 + A^2}}$

15. The radius of the incircle of a triangle is 4 cm and the segments into which one side is divided by the point of contact are 6 cm and 8 cm. The other two sides of the triangle are :

(1) 11 cm and 13 cm

(2) 15 cm and 17 cm

(3) 13 cm and 15 cm

(4) 17 cm and 19 cm

एक त्रिभुज के अन्तः वृत्त की त्रिज्या 4 सेमी है। यदि त्रिभुज की एक भुजा को स्पर्श बिन्दु जिन रेखाखण्डों में विभाजित करता है उसकी लम्बाई 6 सेमी और 8 सेमी हो, तो त्रिभुज की अन्य दो भुजाओं की लम्बाई होगी:

(1) 11 सेमी और 13 सेमी (2) 15 सेमी और 17 सेमी

(3) 13 सेमी और 15 सेमी

(4) 17 सेमी और 19 सेमी

16. The inner circumference of a circular track is 220 metre. The track is 7 metre. 7 metre wide every where. The cost of putting up a fence along the Outer circle at the rate of ₹ 2 per metre is: (Use $\pi = \frac{22}{7}$)

एक वृत्ताकार ट्रैक की आन्तरिक परिधि 220 मी. है। यदि ट्रैक की चौड़ाई प्रतिक स्थान पर 7 मी० है, तो 2 र प्रति मीटर की दर से बाह्य वृत्त के चारों और

तार लगाने का खर्च होगा : (प्रयोग करें $\pi = \frac{22}{7}$)

- 132 ₹ (2) 264 ₹

17. The radius of the circle whose area is the sum of the area of two triangles whose sides are 35, 53, 66 and 33, 56, 65 measured in centimetres, will be:

- (1) 4.62 cm (2) 9.24 cm
- (3) 14√3 cm

उस वृत्त की त्रिज्या, जिसका क्षेत्रफल दो त्रिभुजों के क्षेत्रफलों के योगफल के बराबर है, जिनकी भुजायें 35, 53, 66 तथा 33, 56, 65 सेंटीमीटर हैं, होगी :

- (1) 4.62 सेमी (2) 9.24 सेमी (3) 14√3 सेमी (4) 11.24 सेमी

18. It is proposed to add to a square lawn measuring 58 cm on a side with two circular ends. The centre of each circle being the point of intersection of the diagonals of the square. The area of complete lawn is:

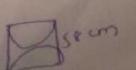
4325.14 cm²

(2) 432.514 cm²

(3) 3844.57 cm²

(4) 43251.4 cm²

58 सेमी. भुजा वाले एक वर्गाकार घास के मैदान के सिरों पर दो वृत्ताकार भाग जोड़ने का प्रस्ताव है। प्रत्येक वृत्त का केन्द्र वर्ग के विकर्णों का प्रतिच्छेद बिन्दु है। पूरे मैदान का क्षेत्रफल होगा :


(1) 4325.14 सेमी2

(2) 432.514 सेमी²

(3) 3844.57 सेमी2

(4) 43251,4 सेमी2

SET/XI(M)/19/27(i)

- 19. Water is flowing at the rate of 7 metres per second through a circular pipe whose internal diameter is 2 cm, into a cylindrical tank the radius of whose base is 40 cm. The increase in the water level in 1/2 hour is:
 - (1) 31500 cm

(3) 787.5 cm

(4) 587.5 cm

एक बेलनाकार टैंक के आधार की त्रिज्या 40 सेमी. है। इसमें एक वृत्ताकार पाइप से 7 मीटर प्रति सेकेण्ड की दर से पानी वह रहा है। यदि पाइप का व्यास 2 सेमी. हो, तो 1/2 घण्टे में टैंक में पानी के तल में वृद्धि होगी :

31500 सेमी

(2) 236.25 सेमी

787.5 सेमी

(4) 587.5 सेमी

20. If the radii of the circular ends of a conical bucket which is 45 cm high, are 28 cm and 7 cm, the capacity of the bucket is: (Use $\pi = \frac{22}{7}$)

(1) 330 cm³

- (2) 4850 cm³
- 22 x 45 x (784+

(3) 48510 cm³

48500 cm³ (4)

यदि 45 सेमी ऊँचाई वाली एक शंक्वाकार बाल्टी के वृत्ताकार सिरों की त्रिज्याएँ क्रमशः 28 सेमी तथा 7 सेमी है, तो बाल्टी की धारिता होगी : (प्रयोग करें $\pi = \frac{22}{7})$

330 सेमी³ (1)

4850 सेमी³

43510 सेमी³

(4) 48500 सेमी3

SET/XI(M)/19/27(h) 21. A jar contains 54 marbles each of which is blue, green or white. The probability of selecting a blue marble at random from the jar is 3 an the probability of selecting a green marble at random is $\frac{4}{9}$. Numb of white marbles in the jar is: एक जार में 54 कंचे हैं जो नीले, हरे तथा सफेद हैं। जार से नील कंचे चुनने की यादुच्छया प्रायिकता 1 तथा हरे कंचे चुनने की यादुच्छया प्रायिकता 4 है, वो जार में सफोद कंचे की संख्या होगी : (1) 12 (2) 18 22. The value of cos1° cos2° cos3° cos180° is : (1) 0 (4) None of these (3) -1cos1º cos2º cos3º cos180º का मान होगा : (4) इनमें से कोई नहीं 23. Mean of first n odd natural numbers is : प्रथम n विषम प्राकृतिक संख्याओं का माध्य है : (3) (n+1)/2 (1) n/2

24. For a frequency distribution, mean, median and mode are connected by the relation:

Mode = 3 Mean - 2 Median (2) Mode = 2 Median - 3 Mean

(4) Mode = 3 Median + 2 Mean Mode = 3 Median - 2 Mean

		20 TH 1

बारम्बारता बंटन के माध्य, माध्यिका तथा बतुलक के बीच सम्बन्ध है :

(1) वहुलक = 3 माध्य - 2 माध्यका (2) वहुलक = 2 माध्यका - 3 माध्य (3) बहुलक = 3 माध्यका - 2 माध्य (4) बहुलक = 3 माध्यका + 2 माध्य

25. The mean of n observations is $\bar{\chi}$. If the first item is increased by second by 2, third by 3 and so on upto n, then the new mean

n प्रेक्षणों का औसत 🗴 है। यदि प्रथम पद में 1, द्वितीय पद में 2, ज़तीय पद में 3 तथा इसी प्रकार n तक जोड़ दिये जायें, तो नया पाध्य है

(1) $\bar{X} + (2n+1)$ (2) $\bar{X} + \frac{(n+1)}{2}$ (3) $\bar{X} + (n+1)$ (4) $\bar{X} - \frac{(n+1)}{2}$

26. The persistence of vision of normal human eye is :

(1) $\frac{1}{10}$ S (2) $\frac{1}{16}$ S (3) $\frac{1}{20}$ S (4) 16 S

एक स्वस्थ मनुष्य के आँख पर दृष्टि का स्थायित्व कितने समय के लिए रहता 者:

(1) $\frac{1}{10}$ $\stackrel{?}{\text{Ho}}$ (2) $\frac{1}{16}$ $\stackrel{?}{\text{Ho}}$ (3) $\frac{1}{20}$ $\stackrel{?}{\text{Ho}}$ (4) 16 $\stackrel{?}{\text{Ho}}$

27. A ray of light strikes a glass plate at an angle of 60°. If the reflected and refracted rays are perpenclicular to each other, the index of refraction of glass is :

प्रकाश की एक किरण काँच की प्लेट से 600 पर टकराती है, यदि परावर्ति एवम् अपवर्तित किरणें परस्पर लम्बवत हैं, तो काँच का अपवर्तनांक है :

(1) =

 $(2) \frac{3}{2}$

(3) $\frac{\sqrt{3}}{2}$

28)	Which of the following lenses would you prefer to use small letters found in a dictionary? (1) A concave lens of focal length 50 cm.	use while reading
	(2) A convex lens of focal length 50 cm. (3) A concave lens of focal length 5 cm. (4) A convex lens of focal length 5 cm.	
	शब्द-कोष में पाये जाने वाले छोटे अक्षरों को पढ़ने के वि में से किसे प्रयोग करना पसन्द करेंगे ?	लए आप नि न लेस
	(1) 50 सेमी० फोकस दूरी वाला अवतल लेंस (2) 50 सेमी० फोकस दूरी वाला उत्तल लेंस	hi = 12 cm
((3) 5 सेमी० फोकस दूरी वाला अवतल लेंस (4) 5 सेमी० फोकस दूरी वाला उत्तल लेंस	さんだって
	If an object of 7 cm height is placed at a distant	
	convex lens of focal length 8 cm, The height of the (1) 2 cm (2) 24 cm (3) 14 cm	(4) 30 cm
-	यदि 7 सेमी ऊँची एक वस्तु 8 सेमी की फोकस दूरी के की दूरी पर रखी है, तो प्रतिबिंब की ऊँचाई होगी :	
	(1) 2 सेमी. (2) 24 सेमी. (3) 14 सेमी.	(4) 30 सेमी-
0. 1	The coloured light which has the least speed in (1) Green (2) Red (3) Yellow	(4) Violet
17	लास प्रिज्म में सबसे कम गति वाला रंगीन प्रकाश	है:
(1	1) हरा (2) लाल (3) पीला	

SET/XI(M)/19/2/09	to the from a point at 118 ha
awing a charge of 2	coulombs is
31. Work done in moving a charge of 2 to a point at 128 volts is: to a point at 128 volts is: (1) 10 Joules (2) 20 Joules	
(1) 10 Joules (2) 20 Joules (1) 10 Joules (2) 20 Joules (2) 118 वोल्ट पर एक बिन्दु से 128 वोल	ट के किसी बिन्दु तक 2 कूलाम के ए
118 बोल्ट पर एक बिन्तु से 120 मार्ग	होगा :
आवेश को चलान स स्वाप्त	(3) 5 जूल (4) 15 जूह
(1) 10	o 25 A for 20 minutes. The arround
32. An electric bulb draws a current of electric charge that flows throu	igh the circuit is:
of electric charge that	(2) 48 Coulombs
(1) 120 coulombs	(4) 500 Coulombs
(3) 300 coulombs	.25 A की धारा खींचता है, तो परिपध में
एक विद्युत-बल्ब, 20 मिनट के लिए 0	.25 A 491
होकर प्रवाहित वैद्युत आवेश की मात्र	1 61.11
(1) 120 कूलाम (2) 48 कूलाम	
33. An electric iron draws a current	of 3.4 A from the 220V supply like
The current that electric field dia	ws when connected to 110 V supply
line is:	
प्रस्तित व्यवस्ति २०० V की विद्युत	लाइन से 3.4 A की धारा खींचती है। जब
रक विद्या रही हो।	नाइन से जोड़ा जाता है, तो धारा खींचेगी
	(3) 1.7 A (4) 0.17 A
(1) 64.7 A (2) 17 A	(3) 1.7 A (4) 0.17 A
	1 C.11: The resistance of
34. A 6Ω resistance wire is doubled	up by folding. The new resistance
the wire is:	
मार के महिरोशक बार को लगेट व	करके दुगना कर दिया जाता है तो तार ^क
	रस्य दुनाम कर त्यमा जाता व ता क
नया प्रतिरोध होगा :	
(1) 0.67Ω (2) 1.5Ω	(3) 3.0Ω (4) 4.5Ω
AND DESCRIPTION OF THE PARTY OF	

35. When two resistances of 3 ohms and 6 ohms are connected

(1) 9 ohn	18 12/0 1/20	hms (3)- 2	ohm (4)	1/4 ohm
जब 3 ओम	और 6 ओम के व	रो प्रतिरोध पाश्व	क्रम में संयोजित	विद्ये जाने है
तो तुल्य प्रति	तेरोध होगा :			
(1) 9 and	(0) . (0 . 7		- Jan 64	

36. An electric heater draws a current of 10A from a 220V supply. What will be the cost of using the heater for 5 hours everyday for 30 days if the cost of 1 unit (1 kwh) is ₹ 5.20?

(2) 1/2 3414

एक विद्युत हीटर 220V की सप्लाई से 10A की धारा खींचता है। हीटर को 30 दिनों तक प्रतिदिन 5 घण्टे प्रयोग करने की लागत क्या होगी, यदि 1 यूनिट (1kwh) की लागत 5.20 ₹ है ?

(3) ₹111.44 (2) ₹157.204 ₹ 1716

37. A Jet engine works on the principle of :

- (1) Conservation of linear momentum
 - Conservation of kinetic energy
 - (3) Conservation of angular momentum
 - Conservation of inertia (4)

जेट इंजन किस सिद्धान्त पर कार्य करता है ?

- (1) रेखीय संवेग संरक्षण
- (2) गतिज ऊर्जा संरक्षण
- (3) कोणीय गति संवेग संरक्षण
- (4) जड़ता का संरक्षण

38. A bob of a second pendulum is replaced by another bob of double mass. The new time period will be :

- 1 sec (1)
- 3 sec (3)

2 sec

None of these

SE.	1/XI(m)/15/25/5			
		2) 2	ान वाले गोलक १ सेकण्ड १ नमें से कोई न	
39.	The magnetic field at a distance, of r I is 0.4 tesla. The magnetic field at a (1) 1.6 tesla (2) 0.8 tesla (एक सीधे लम्बे तार में धारा I प्रवाहित है की तीव्रता 0.4 टेसला है, तो 2r दूरी प्र (1) 1.6 टेसला (2) 0.8 टेसला	3) (इोती है	े.1 tesla (हे, इसमें r दूरी म्बकीय क्षेत्र की	4) 0.2 tesla
	A bomb of mass 30 kg at rest explored kg. The velocity of 18 kg mass is 6 other mass will be: (1) 324 J (2) 256 J 30 किया. का एक बम विस्फोटित हो टुकड़ों में टूट जाता है। 18 किया. द्रव्या तो दूसरे टुकड़े की गतिज उर्जा होगी (1) 324 J (2) 256 J	odes 5m/s (3) कर मान	into 2 pieces ec. The kinet 524 J 18 किग्रा और वाले टुकड़े का	(4) 486 J
•	The law applicable for determining when a source and an observer ar (1) Newton's law (3) Huygen's law	(2)	Galileo's la Doppler's l	law
(जब स्रोत एवम् प्रेक्षक दोनों गतिमान हैं करने सम्बन्धी नियम है : 1) न्यूटन का नियम 3) हाईगेन्स का नियम	(2)	आवृत्ति में अ गैलीलियों का डॉप्लर का ि	ा नियम

42. A car accelerates from rest at a constant rate a for some time, after which it don't be a for rest. If the which it deaccelerates at a constant rate α for some total time electrons at a constant rate β and comes to rest. If the total time elapsed is t, the maximum velocity acquired by the car will

एक कार कुछ समय के लिए एक स्थिर दर α से त्वरित होती है, जिसके बाद एक स्थिर दर β से अवमन्दित होती है, तथा अन्त में स्थिर अवस्था प्रत कर लेती है। यदि इस वीच में लगा कुल समय t हो, तो कार द्वारा आधार अधिकतम वेग होगा :

(1)
$$\frac{\left(\alpha^2 + \beta^2\right)}{\alpha\beta} \times t$$
 (2) $\left(\frac{\alpha^2 - \beta^2}{\alpha\beta}\right) \times t$ (3) $\left(\frac{\alpha + \beta}{\alpha\beta}\right) \times t$ (4) $\left(\frac{\alpha\beta}{\alpha + \beta}\right) \times t$

- 43. A body of mass 5 kg is moving with a momentum of 10 kg m/s. A force of 0.2 N acts on it in the direction of motion of body for 10 sec. The increase in kinetic energy is:
 - (1) 1000 Joule

(2) 995.4 Joule

(3) 4.4 Joule

(4) 2 Joule

5 किलोग्राम द्रव्यमान के एक पिण्ड का संवेग 10 किग्रा-मीटर/सेकेण्ड है। उस पर 0.2 N का बल गति की दिशा में 10 सेकेण्ड के लिए कार्य करता है, तो उस पिण्ड की गतिज ऊर्जा में वृद्धि होगी :

(1) 1000 जूल

(2) 995.4 जूल

(3) 4.4 जूल

(4) 2 जुल

44. Magnetic field inside a long solenoid is :

- (1) Uniform and strong (2) Non uniform only

(3) Non-uniform and weak (4) None of these एक लम्बे सॉलिनाइड के अन्दर चुम्बकीय क्षेत्र होता है :

- (1)) एक समान और मजबूत
- (2) केवल असमान
- असमान और कमजोर
- (4) इनमें से कोई नहीं

SET	(SET/XI(M)/19/27(i) (SET/XI(M)/19/27(i) 45. Nature of image formed on retina of human eye is ; (अ) Virtual and invent (३) Virtual and invent (३) प्रतिविम्य की प्रकृति । (३) (३) प्रतिविम्य की प्रकृति । (३) (३) प्रतिविम्य की प्रकृति । (३)
	(3) Real की श्रेटना पर (2) व्याभासी एवं संदा
39.	(3) वास्तविक एवं साया (3) वास्तविक एवं साया (2) 0.36 Mega Joules हो
	(3) 36 Mega Joules (3) 36 Mega Joules 1 किलोवाट घंटा वराबर होता है : (2) 0.36 मेगा जूल (4) 96 मेगा जूल
40.	(3) 36 मगा जूल
	(2) $6.67 \times 10^{-11} \text{ N}$ (3) $6.67 \times 10^{-9} \text{ N}$ (4) $6.67 \times 10^{-11} \text{ N}$
41.	एक किया के दो द्रव्यमान एक मीटर की दूरी पर निर्वात में खें। मध्य लगने वाला गुरुत्वाकर्षण बल होगा : (1) 6.67 न्यूटन (2) 6.67 × 10-7 न्यूटन
6	(3) 6.67 × 10 ⁻⁹ न्यूटन (4) 6.67 × 10 ⁻¹¹ न्यूटन
	48. A wire of resistance R is cut into five equal parts and then of in parallel. Then the equivalent resistance is:
	एक तार जिसका प्रतिरोध R है पाँच बराबर भागों में काटा जाता है भाग को समानान्तर क्रम में जोड़ने के उपरान्त परिणामी प्रतिरोध (1) R/5 (2) R/25 (3) 5R

4	SET/XI(M)/15	
4)	At what temperature are Fabrent	
	9. At what temperature are Fahrenheit and Kelvin equal ?	
	The state of the s	
	(1) 374.59 (2) 474.25 (3) 674.59 (4) 574.59	
50		
	Which phenomenon is responsible for the reddish appearance of sun at sunrise or sunset?	the
	(1) Scattering of light	
	Dispersion of light	
	(3) Total internal reflection of light	
	(4) Diffraction of light	
	कौन-सी घटना सूर्योदय या सूर्यास्त पर सूर्य के लाल दिखने के लिए उल	रदायी
	(1) प्रकाश का प्रकीर्णन	
	(2) प्रकाश का परिक्षेपण	
	(3) प्रकाश का पूर्ण आंतरिक परावर्तन	
	(4) प्रकाश का विवर्तन	
51.	The bond dissociation energy of hydrogen bonds in water molecular	ıle is
	जल के अणु में हाइड्रोजन आबन्ध की आबन्ध वियोजन ऊर्जा है:	
	(1) 10.5 kJ/mol (2) 20.5 kJ/mol (4) 230.3 kJ/mol	
1		
	(3) 23.3 kJ/mol (4) 230.3 kJ/mol	
-	Which element in the following reaction gets oxidized?	
2.		*
	$H_2SO_4 + Zn \rightarrow ZnSO_4 + H_2 \uparrow$ (3) Overgen (4) Zing	
	(1) Hydrogen (2) Sulfur (3) Oxygen (4) Zind	

T/XI(M)/19/27(i)

चिम्न अभिक्रिया में कीन-सा तत्व आक्सीकृत होता है ?

 $H_2SO_4 + Zn \rightarrow ZnSO_4 + H_2 \uparrow$

(1) हाइड्रोजन (2) गन्धक

(3) ऑक्सीजन

53. The common name of Sulphuric acid is:

(1) Oil of Vitriol

(2) Blue Vitriol

(3) Muriatic acid

(4) Green Vitriol

गंधक के अम्ल का सामान्य नाम होता है :

(1) तृतिया का तेल

(2) नीला तृतिया

(3) म्युरिएटिक अम्ल

(4) हरा तृतिया

54. A complex compound in which the oxidation number of a metal is zero is:

एक जटिल योगिक जिसमें एक धातु की ऑक्सीकरण संख्या शून्य है, वह है :

Ka[Fe(CN)6]

(2) K₃[Fe(CN)₆]

[Ni(COa)]

(4) [Pl (NH2)4]Cl2

55. An excess of AgNO, is added to 100 ml of a 0.01 M solution of dichlorotetra aquachromium (III) chloride. The number of moles of AgCl precipitated would be:

एक 100 मिलीलीटर 0.01 मोलर डाइक्लोरोटेट्रा एक्वाक्रोमियम (III) क्लोराइड के घोल में अधिक मात्रा में AgNO3 डाला जाता है। अवक्षेपित हुए AgCl के मोल्स (M) की संख्या होगी :

0.001 (2) 0.002

(3) 0.003 (4) 0.01

56.	Among the following compounds teletrophilic nitration is: (1) Toluene	SET/XI(M)/19/27(i)
	eletrophilic nitration is ;	he one that is most reactive towards
	(1) Toluene	(2)
	(3) Benzoic acid	(2) Benzene
	निम्नं यौगिक में से जो इलेक्टोफ	(4) Nitrobenzene
	निम्न यौगिक में से जो इलेक्ट्रोफि प्रतिक्रियाशील है, वह है:	।एक नाइट्रेसन के लिए सर्व ज्या
	(1) टालुइन (2) बेन्जीन	(3) बेन्जोइक अम्ल (4) नाइ,ोबेन्जीन
57.	Correct order of atomic radii is:	
	परमाणु त्रिज्या का सही क्रम है:	
	(1) B < Al < Ga < In	(2) B < Ga < Al < In
	(3) Al < Ga < B < In	(4) Ga < B < Al < In
58.	Which of the following contains	highest number of molecules?
	(1) 44 g of CO ₂	(2) 36 g of H ₂ O
	(3) 48 g of O ₃	(4) 32 g of SO ₄
	निम्न में से कौन अणुओं की अधिव	कतम संख्या रखता है ?
	(1) 44 ग्राम CO, का	(2) 36 期 中 H ₂ O का
	(3) 48 ग्राम 03 का	(4) 32 知中 SO ₄ 朝
	(5) 40 11103	
0	The molecular formula of potas	h alum is:
(6	THE MOTOR SERVICE CON THE PA	

पोटाश फिटकरी का आण्विक सूत्र है

- (1) K₂.Al₂ (SO₄)₃.12 H₂O
- (2) K₂(SO₄).Al₂(SO₄)₃.12H₂O
 - (3) Al₂(SO₄)₃.K₂(SO₄).20H₂O
 - (4) K₂(SO₄).Al₂(SO₄)₃.24H₂O

SET/XI(M)/19/27(i)	
60. German Silver is an alloy of :	
जर्मन सिल्वर मिश्र धातु है :	
(1) Cu, Sn, Zn	(2) Cu, Sn, Ni
(3) Cu, Ni, Zn	(4) Cu, Zi, Au
61. When ethanol reacts with sodium	75
जब सोडियम धातु, इथेनॉल से क्रिया करत है ?	ती है, तो निम्न में से कीन-सी गैस निकलती
(1) CO ₂ (2) H ₂	(3) O ₂ (4) CO
62. Bleaching powder is represented	by the formula:
ब्लीचिंग पाऊडर का सही सूत्र है :	
(1) CaO.CaCl ₂ (2) CaCl ₂	(3) CaCl ₂ .CaCO ₃ (4) Ca(OCI)CI
63. Which of the following is a polar	molecule?
निम्न में से कौन ध्रुवीय अणु है ?	
	(3) SiF ₄ (4) XeF ₄
64. In the reaction $Cu^{2+} + Fe \rightarrow Cu + Fe$	e2+ the substance that is oxidised is:
(1) Cu2+	(2) Fe (4) None of above
(3) Fe ²⁺	(4) None of above
Cu ²⁺ +Fe → Cu+Fe ²⁺ अभिक्रिया में	ऑक्सीकृत पदार्थ है :
(1) Cu ²⁺	(2) Fe(4) इनमें से कोई नहीं
(3) Fe ²⁺	(4) इनमें से कोई नहा

65.	The burning	SET/XI(M)/19/27(i)
(The burning of magnesium in air i (1)— Combination reaction (3) Displacement reaction भैग्नीशियम का वायु में जलना एक : 1) संयोजन अभिक्रिया है (3) विस्थापन अभिक्रिया है (4) Vhich among the following phenometrics:	(2) Decomposition reaction (4) Neutralization reaction (2) विघटन अभिक्रिया है (4) उदासीन अभिक्रिया है
	p-aminophenol m-nitrophenol	(2) phenol (4) p-nitrophenol
(1	मेम्न फेनालिक यौगिकों में सबसे ज्या) पैरा-अमीनोफेनॉल) मेटा-नाइट्रोफेनॉल	(2) फेनॉल (4) पैरा-नाइट्रोफेनॉल
(1	thanol on Oxidation gives :) Ethane) Formaldehyde ोनोल के ऑक्सीकरण से बनता है	(2) Ethene (4) Ethanoic acid :
(1)	इथेन फारमेलडिहाइड	(2) इथीन (4) इथेनोइक अम्ल
68 . Th वह (1)	e metal that does not displace धातु जो तनु अम्ल से हाइड्रोजन Fe (2) Cu	hydrogen Ironi वा विस्थापित नहीं करती है : (4) Zn (3) Na P.T.O

e of:		
(3)	Fe	(4) Pb
<u>(3)</u>	Zn and Cu	(4) Sn and Pb
(3)	Zn और Cu	(4) Sn और Pb
ompo	unds shows	the presence of
(2)		ed acetic acid
(2)	HCN	
als is		provide cathodic (4) Lead
न नो है		
(3)	जिंक	(4) लेड
pour		n exhibits highest
न की (3	ऑक्सीकरण	अवस्था सर्वाधिक है ?
	(3) (3) (3) (3) (2) (4) (4) (2) (4) (3) (3) (3) (3) (3) (3) (3) (3)	(3) Fe (3) Zn and Cu (3) Zn और Cu (3) Zn और Cu (4) Men (4) Concentrate (4) Concentrate (4) HCN (4) HCN (4) HFB Rtকn (2) HCN (4) सान्ध्र सिरका (3) Zinc (3) Zinc (3) जिंक (3) जिंक

7	(3) 可 可 时 (1)	nen a student adds red li nus turned blue. Which o cess so that the change in Backing soda Solution Ammonia Solution एक छात्र किसी जलीय विलय रंग नीले में बदल जाता है। व मिलाये कि ऊपर के बदलाव वेकिंग सोडा विलयन अमोनिया विलयन	colour is (2) (4) न में लाल । ह छात्र नि को उत्क्रमा	reversed ? Lime water Vineger Solu लिटमस डालता है	tion हे तो जाल जिटमस लियन में आधिकता
75	. 3.4: of o	2 g of sucrose is dissolved axygen atoms in the solution	in 18 g of	water in a bea	ker. The numbe
	(1)	2 g सुक्रोज को एक बीकर में ऑक्सीजन के परमाणुओं की 6.68 × 10 ²³ 6.022 × 10 ²³	संख्या होर	जल में घोला ज गी: 6.09 × 10 ²² 6.6 × 10 ²²	ाता है, तो विलय 21
76.	Stat	tue of Unity is built on the	e river :		
		Mahanadi (2) Narmad			(4) Tapti
YE!	रिटेच	यू ऑफ युनिटी किस नदी प	र बनाई ग	ाई है ?	
	(1)	महानदी (2) नर्मदा	(3)	साबरमती	
77.	The	world's largest solar park	which w	as inaugurate	d in 'Pavagada'
	they	rear 2018 in India is loca	ited in th	Kerala	
		Tamil Nadu	(2)	Karnataka	
	(3)	Maharashtra			ਰ ਸੇਂ ਸ਼ੁਰੂ 2018
	उद्घा	ति का सबसे बड़ा सौर पार्व दित किया गया, किस राज् तिमलनाडु (2) केरल	1	ावागढ़' में भार त है ? महाराष्ट्र	(4) कर्नाटक

SET/XI(M)/19/27(i)

78	8. Ar 20	nong the followings who was c	onfer	red Bharat Ratna in the ye
	(1)	Pandit Madan Mohan Malavi	ya	
	(2)	Pranab Mukherjee		
	(3)			
	(4)			
	निग	न में से किसे सन् 2019 में भारत	रत्न पु	रस्कार से सम्मानित किया गया
	(1)			
	(2)			
	(4)	अटल बिहारी वाजपेयी सी.एन.आर.राव		
	(+)	सा.एन.आर.राव		
79.	The	e First person in India who was	s awa	rded, Nobel Prize was?
	(1)	C.V. Raman	(2)	Amartya Sen
	(3)	Ravindra Nath Tagore	(4)	Har Govind Khurana
	प्रथा	म भारतीय जिसे नोबल पुरस्कार	प्रदान	किया गया :
	(1)	सी.वी.रमन	(2)	अमर्त्य सेन
		रवीन्द्र नाथ दैगोर	(4)	हरगोविन्द खुराना
	(0)			
0.	'Cle	an Indian Mission' was officia	lly la	unched on :
	(1)	2nd October, 2014	(2)	15th August, 2014
				5th June, 2014
				कत तथा १
	'स्वच	छ भारत अभियान' का अधिकानि		
	(1)Y	2nd अक्टूबर, 2014	(2)	15th अगस्त, 2014
	~	25th दिसम्बर, 2014	(4)	5th जून, 2014
	(3)			

81.	'Fea	ar of Ants' is called :		
	(1)	Cynophobia Hydrophobia	(2)	Ophidiophobia Myrmecophobia
82.	Wh	o is the author of the book 'B	ecomi	
	(3)	Barack Obama Chetan Bhagat	(2)	Michelle Obama
83.		at is the study and science of		Vikrant Khanna measurement called 2
	(1)	Horology	(2)	
	(3)	Calligraphy	(4)	Ornithology
84)	The	correct meaning of the Idion	A BI	ack Sheep' is :
	11	Black man	(2)	Unlucky sheep
	(3)	Unlucky person	(4)	Lucky person
85.	Ider	ntify the correctly spelt word :		
	(1)	Acquaintence	(2)	Acquantance
((3)	Acquaintance	(4)	Acquentence
86.	chea	nge the following sentence i	n to a	active voice - "Every doctor is
	(1)	He cheated every doctor		
	(2)	He has cheated every doctor		
	(3)	He cheats every doctor		
	(4)	He is cheating every doctor		
			a lake	P.T.O

"Someone has spread this rumour.				
	(1			
	(2) This rumour has been spreading.			
	(3)	This rumour has been spi	read.	
	(4)	This rumour was spread.		
Fi	ll in t	the blank with appropriate	followin	ng words:
88	. Th	ey tried to leave the country	th	neir own lives :
	(1)	afraid of (2) afraid abo	out (3)	afraid for (4) afraid
89. Who was coming to see me this morning?				
	(1)	You said	(2)	did you say that
	(3)	You did say	(4)	did you say
90.	Wai	t here until I you.		
		will call	(2)	call
	(3)	am calling	(4)	am going to call
91.	'आएं	एँगे अच्छे दिन भी' के रचनाक	ार हैं :	
	(1)	स्वयं प्रकाश	(3)	रामवृक्ष बेनीपुरी
	The second	यशपाल	(4)	मन्नू भंडारी
92	'शीरे	-धीरे चलो'। वाक्य में रेखांकि	त पद है	
	(1)	ज्ञातिवाचक संज्ञा	(2)	भाववाचक सज्ञा
	(1)	अनिश्चयवाचक क्रिया विशेषण	(4)	रीतिवाचक क्रिया विशेषण

93.	मरणासन्न में समास है
	(1) तत्पुरुष समास
	(3) कर्मधारय समास
94.	उच्चारण शब्द में उपसर
	(1) 3
((3) उत्
95.	'कवितावली' रचना की
	(1) अवधी
	(३)० मेशिली

- (2) अव्ययीभाव समास(4) द्वन्द्व समास
- (2) उच् (4) उच्च
- (1) अवधी
 (2) ब्रज
 (3) मैथिली
 (4) संस्कृत

意:

- 96. निम्न में कौन रीतिकालीन किव नहीं है ?
 (1) घनानंद
 (2) देव
 (3) मितराम
 (4) रसखान
- 97. शुद्ध वर्तनी वाला शब्द है :
 (1) सुसुप्ति
 (3) सुषप्ति
 (4) सुषुप्ति
- 98. मतैक्य में संधि है : (1) दीर्घ (3) यण्